Specimen Paper C

1 Differentiate (a)
$$y = \frac{\ln(x^2 + 1)}{2x}$$
 (b) $y = \sqrt{x} \sin^{-1} \sqrt{x}$ 3,3

2
$$z = \cos \theta + i \sin \theta$$

Show that $z\overline{z} + \frac{z}{\overline{z}}$ can be expressed in the form $p + q\cos 2\theta + r\sin 2\theta$, Stating the values of p,q and r.

3 Use the substitution
$$x = t^2$$
 and integration by parts to find

$$\int (1+\sin\sqrt{x})dx \qquad 6$$

4 Find a formula in terms of n for
$$\sum_{r=1}^{n} (5-2r)$$

Hence evaluate

$$\sum_{r=11}^{30} (5-2r)$$
 4

5 Express in partial fractions
$$\frac{2x-1}{x(x^2+1)}$$
 4

6 A curve is defined by the equation $3x^2 - xy + 5y^2 = 7x$. Given the point A(1,1) lies on the curve find $\frac{dy}{dx}$ and the equation of the tangent at the point A. 5

7 Prove by induction
$$1 + \frac{5}{2} + 4 + ... + \frac{3n-1}{2} = \frac{n(3n+1)}{4}$$
, *n* a natural number, **4**

8 A geometric series is defined by
$$5 + \frac{5x}{(x-1)} + \frac{5x^2}{(x-1)^2} + \dots + \frac{5x^{n-1}}{(x-1)^{n-1}}$$

Write down the common ratio r of the series and find a formula for the sum of the series to n terms in its simplest form.

Verify the formula works for the sum to 2 terms. 5 9/over 9 Find an equation of the plane P which passes through the point (3,5,-1) with normal parallel to i + 2j - 3k. Find the point of intersection of the line $\frac{x+2}{4} = \frac{y-2}{3} = z$ and the plane **P**. 2,3 A recurrence relation is defined by the formula $x_{n+1} = \frac{1}{2} \left(x_n + \frac{11}{x} \right)$ 10 Given $x_0 = 3$ calculate x_1, x_2 and x_3 to 3 significant figures. Find the fixed points of this recurrence relation. 4 Find the Maclaurin series for $\log_{e}(1+x)$ up to terms in x^{3} . 11 **Hence** find the Maclaurin series up to terms in x^3 for $\log_{a}(1-2x)$ 3,2 12 Find the matrix A associated with reflection in the y-axis and the matrix **B** associated with an anti-clockwise rotation of $\frac{\pi}{4}$ Find the matrix **AB** and find the image of the point (x, y) under the transformation matrix AB. Hence write down the coordinates of the image of (2,0) under this 5 transformation. Prove that the following statements are true or false, if false provide 13 a counter example, where *n* is any natural number. $n^4 - n^2$ is always even, n any natural number >1. (a) $n^4 + 1$ is always a prime number. (b) 3 14 Find the general solution of the differential equation **(a)**

$$\frac{d^2y}{dx^2} - 8\frac{dy}{dx} + 16y = 50e^{-x}$$

(b) Find the particular solution given at x = 0, y = 0 and $\frac{dy}{dx} = 0$ 7,3

15/over

15 A class of 15 Advanced Higher students are given the golden opportunity of attending extra classes during a very sunny Easter Holiday.

The long suffering teacher conjectures that the number of students who attend satisfies a differential equation $\frac{dP}{dt} = k(15 - P)$, P is the number of students, t is the number of days.

(a) Given at t=0, P=0 show that $\frac{1}{15-P} = Ae^{kt}$, stating the exact value of A.

Hence find a formula for *P* explicitly in terms of *t*.

- (b) After 3 days 6 students attend, find the value of k to 2 significant figures.
- (c) On the 4th day the weather changes, does this affect the number of students ?
- (d) As the exam draws closer more and more students arrive, how many days does it take 10 students to attend ?

			5,2,2,1	
16	A function f is defined by the formula $f(x) = \frac{x^2}{(1-x^2)}$			
	(a)	Write down the equations of all 3 asymptotes.	3	
	(b)	Show that f has only one stationary point. Find the coordinates of the point and justify its nature	re. 4	
	(c)	(c) Sketch the graph of $y = f(x)$ showing clearly what hap		
		as $x \to \pm \infty$	2	
	(d)	On the same diagram sketch the graph of $y = f(x) $	2	
17	A co	A complex number is defined as $z = \cos \theta + i \sin \theta$		
	Write down an expression for z^4 using the binomial theorem and another expression using de Moivre's Theorem.		m and 3	
	Hence equating real parts write down an expression for $\cos 4\theta$ in terms of $\cos \theta$ and $\sin \theta$.		4θ 3	
	Expr	ess $\cos 4\theta$ entirely in terms of $\sin \theta$.	3	
End of question paper			Total 100	