Specimen Paper C

1 Differentiate (a) $y=\frac{\ln \left(x^{2}+1\right)}{2 x}$ (b) $y=\sqrt{x} \sin ^{-1} \sqrt{x}$
$2=\cos \theta+i \sin \theta$
Show that $z \bar{Z}+\frac{z}{\bar{Z}}$ can be expressed in the form $p+q \cos 2 \theta+r \sin 2 \theta$, Stating the values of p, q and r.

3 Use the substitution $x=t^{2}$ and integration by parts to find

$$
\int(1+\sin \sqrt{x}) d x
$$

$4 \quad$ Find a formula in terms of n for $\sum_{r=1}^{n}(5-2 r)$
Hence evaluate $\quad \sum_{r=11}^{30}(5-2 r)$
5 Express in partial fractions $\frac{2 x-1}{x\left(x^{2}+1\right)}$
6 A curve is defined by the equation $3 x^{2}-x y+5 y^{2}=7 x$.
Given the point $\mathrm{A}(1,1)$ lies on the curve
find $\frac{d y}{d x}$ and the equation of the tangent at the point A .
7 Prove by induction $1+\frac{5}{2}+4+\ldots+\frac{3 n-1}{2}=\frac{n(3 n+1)}{4}, n$ a natural number, 4
8 A geometric series is defined by $5+\frac{5 x}{(x-1)}+\frac{5 x^{2}}{(x-1)^{2}}+\ldots+\frac{5 x^{n-1}}{(x-1)^{n-1}}$
Write down the common ratio r of the series and find a formula for the sum of the series to n terms in its simplest form.

Verify the formula works for the sum to 2 terms.

-2-

$9 \quad$ Find an equation of the plane \boldsymbol{P} which passes through the point (3,5,-1) with normal parallel to $i+2 j-3 k$.
Find the point of intersection of the line $\frac{x+2}{4}=\frac{y-2}{3}=z$ and the plane \boldsymbol{P}.

2,3
10 A recurrence relation is defined by the formula $x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{11}{x_{n}}\right)$
Given $x_{0}=3$ calculate x_{1}, x_{2} and x_{3} to 3 significant figures.
Find the fixed points of this recurrence relation.
11 Find the Maclaurin series for $\log _{e}(1+x)$ up to terms in x^{3}.

Hence find the Maclaurin series up to terms in x^{3} for $\log _{e}(1-2 x)$

12 Find the matrix \mathbf{A} associated with reflection in the y-axis and the matrix \mathbf{B} associated with an anti-clockwise rotation of $\frac{\pi}{4}$
Find the matrix $\mathbf{A B}$ and find the image of the point (x, y) under the transformation matrix AB.
Hence write down the coordinates of the image of $(2,0)$ under this transformation.

13 Prove that that the following statements are true or false, if false provide a counter example, where n is any natural number.
(a) $n^{4}-n^{2}$ is always even, n any natural number >1.
(b) $\quad n^{4}+1$ is always a prime number.

14 (a) Find the general solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}-8 \frac{d y}{d x}+16 y=50 e^{-x}
$$

(b) Find the particular solution given at $x=0, y=0$ and $\frac{d y}{d x}=0$

15/over

15 A class of 15 Advanced Higher students are given the golden opportunity of attending extra classes during a very sunny Easter Holiday.

The long suffering teacher conjectures that the number of students who attend satisfies a differential equation $\frac{d P}{d t}=k(15-P), \mathrm{P}$ is the number of students, t is the number of days.
(a) Given at $t=0, P=0$ show that $\frac{1}{15-P}=A e^{k t}$, stating the exact value of A.

Hence find a formula for P explicitly in terms of t.
(b) After 3 days 6 students attend, find the value of k to 2 significant figures.
(c) On the $4^{\text {th }}$ day the weather changes, does this affect the number of students?
(d) As the exam draws closer more and more students arrive, how many days does it take 10 students to attend ?

5,2,2,1
16 A function f is defined by the formula $f(x)=\frac{x^{2}}{\left(1-x^{2}\right)}$
(a) Write down the equations of all 3 asymptotes.
(b) Show that f has only one stationary point. Find the coordinates of the point and justify its nature.
(c) Sketch the graph of $y=f(x)$ showing clearly what happens as $x \rightarrow \pm \infty$
(d) On the same diagram sketch the graph of $y=|f(x)|$

17 A complex number is defined as $z=\cos \theta+i \sin \theta$ Write down an expression for z^{4} using the binomial theorem and another expression using de Moivre’s Theorem.

Hence equating real parts write down an expression for $\cos 4 \theta$ in terms of $\cos \theta$ and $\sin \theta$.

Express $\cos 4 \theta$ entirely in terms of $\sin \theta$.

